Generalized solution Three-detector problem and Newell's method




1 generalized solution

1.1 step 1
1.2 step 2
1.3 step 3





generalized solution

3 steps:
1. find minimum upstream count,




n

u




{\displaystyle n_{u}}


2. find minimum downstream count,




n

d




{\displaystyle n_{d}}


3. choose lower of two,




n

p


=
min
{

n

u


 
,
 

n

d


}


{\displaystyle n_{p}=\min\{n_{u}\ ,\ n_{d}\}}



step 1

all possible observer straight lines between upstream boundary , point p have constructed observer speeds smaller free flow speed:








c

q
p


=

q

0


Δ

t



k

0


Δ

x

=

q

0


(

t

p




t

q


)


k

0


(

x

p




x

q


)

(
5
)


{\displaystyle c_{qp}=q_{0}\delta {t}-k_{0}\delta {x}=q_{0}(t_{p}-t_{q})-k_{0}(x_{p}-x_{q})\qquad (5)}



where



Δ

t

=

t

p




t

q


=



(

x

m




x

u


)


v

q
p






{\displaystyle \delta {t}=t_{p}-t_{q}={\frac {(x_{m}-x_{u})}{v_{qp}}}}






v

q
p



[
0
,

v

f


]


{\displaystyle v_{qp}\in [0,v_{f}]}

,



Δ

x

=

x

m




x

u




{\displaystyle \delta {x}=x_{m}-x_{u}}


thus need minimize





n

q


+

q

0


(

t

p




t

q


)


k

0


(

x

m




x

u


)



{\displaystyle {n_{q}+q_{0}(t_{p}-t_{q})-k_{0}(x_{m}-x_{u})}}

; i.e.,








n

u


=

min


t

q




{

n

q


+

q

0


(

t

p




t

q


)


k

0


(

x

m




x

u


)
}

(
6
)


{\displaystyle n_{u}=\min _{t_{q}}\{n_{q}+q_{0}(t_{p}-t_{q})-k_{0}(x_{m}-x_{u})\}\qquad (6)}



since



d

n

q



/

d
t


q

0




{\displaystyle dn_{q}/dt\leq q_{0}}

, see objective function non-increasing , therefore




t

q





=

t


p

1






{\displaystyle t_{q}^{*}=t_{p_{1}}}

. q should placed @




p

1




{\displaystyle p_{1}}

, have:








c

q
p


=

c


p

1


p


=

q

0



(




x

m




x

u




v

f




)



k

0


(

x

m




x

u


)
=
0

(
7
)


{\displaystyle c_{qp}=c_{p_{1}p}=q_{0}\left({\frac {x_{m}-x_{u}}{v_{f}}}\right)-k_{0}(x_{m}-x_{u})=0\qquad (7)}



thus,




n

u


=

n


p

1






{\displaystyle n_{u}=n_{p_{1}}}


step 2

we have:




n

d


=

min


q









{

n


q









+

c


q







p


}
=

min


q









{

n


q









+

q

0


Δ

t



k

0


Δ

x

}


{\displaystyle n_{d}=\min _{q^{ }}\{n_{q^{ }}+c_{q^{ }p}\}=\min _{q^{ }}\{n_{q^{ }}+q_{0}\delta {t}-k_{0}\delta {x}\}}

repeat same steps find




n

d




{\displaystyle n_{d}}

minimized when




q







=

p

2




{\displaystyle q^{ }=p_{2}}

. , @ point




p

2




{\displaystyle p_{2}}

get:








n

d


=

n


p

2




+

q

0


(




x

d




x

m



w


)


k

0


(

x

d




x

m


)

(
8
)


{\displaystyle n_{d}=n_{p_{2}}+q_{0}({\frac {x_{d}-x_{m}}{w}})-k_{0}(x_{d}-x_{m})\qquad (8)}



since fd triangular,






q

0


w


+

k

0


=

k

j




{\displaystyle {\frac {q_{0}}{w}}+k_{0}=k_{j}}

. therefore, (8) reduces to:








n

d


=

n


p

2




+
(

x

d




x

m


)

k

j



(
9
)


{\displaystyle n_{d}=n_{p_{2}}+(x_{d}-x_{m})k_{j}\qquad (9)}



step 3

to solution choose lower of




n

u




{\displaystyle n_{u}}

,




n

d




{\displaystyle n_{d}}

.








n

p


=
min
{

n

u


 
,
 

n

d


}
=
min
{

n


p

1




 
,
 

n


p

2




+
(

x

d




x

m


)

k

j


}

(
10
)


{\displaystyle n_{p}=\min\{n_{u}\ ,\ n_{d}\}=\min\{n_{p_{1}}\ ,\ n_{p_{2}}+(x_{d}-x_{m})k_{j}\}\qquad (10)}



this newell s recipe 3-detector problem.







Comments