Pythagorean means Mean




1 pythagorean means

1.1 arithmetic mean (am)
1.2 geometric mean (gm)
1.3 harmonic mean (hm)
1.4 relationship between am, gm, , hm





pythagorean means

arithmetic mean (am)

the arithmetic mean (or mean ) of sample




x

1


,

x

2


,

,

x

n




{\displaystyle x_{1},x_{2},\ldots ,x_{n}}

, denoted






x
¯





{\displaystyle {\bar {x}}}

, sum of sampled values divided number of items in sample:










x
¯



=


1
n



(



i
=
1


n




x

i



)

=




x

1


+

x

2


+

+

x

n



n




{\displaystyle {\bar {x}}={\frac {1}{n}}\left(\sum _{i=1}^{n}{x_{i}}\right)={\frac {x_{1}+x_{2}+\cdots +x_{n}}{n}}}



geometric mean (gm)

the geometric mean average useful sets of positive numbers interpreted according product , not sum (as case arithmetic mean) e.g. rates of growth.










x
¯



=


(



i
=
1


n




x

i



)




1
n




=


(

x

1



x

2




x

n


)


1

/

n




{\displaystyle {\bar {x}}=\left(\prod _{i=1}^{n}{x_{i}}\right)^{\tfrac {1}{n}}=\left(x_{1}x_{2}\cdots x_{n}\right)^{1/n}}



for example, geometric mean of 5 values: 4, 36, 45, 50, 75 is:







(
4
×
36
×
45
×
50
×
75

)

1

/

5


=



24

300

000


5



=
30.


{\displaystyle (4\times 36\times 45\times 50\times 75)^{1/5}={\sqrt[{5}]{24\;300\;000}}=30.}



harmonic mean (hm)

the harmonic mean average useful sets of numbers defined in relation unit, example speed (distance per unit of time).










x
¯



=
n



(



i
=
1


n




1

x

i




)



1




{\displaystyle {\bar {x}}=n\cdot \left(\sum _{i=1}^{n}{\frac {1}{x_{i}}}\right)^{-1}}



for example, harmonic mean of 5 values: 4, 36, 45, 50, 75 is









5




1
4



+



1
36



+



1
45



+



1
50



+



1
75






=


5





1
3







=
15.


{\displaystyle {\frac {5}{{\tfrac {1}{4}}+{\tfrac {1}{36}}+{\tfrac {1}{45}}+{\tfrac {1}{50}}+{\tfrac {1}{75}}}}={\frac {5}{\;{\tfrac {1}{3}}\;}}=15.}



relationship between am, gm, , hm

am, gm, , hm satisfy these inequalities:








a
m



g
m



h
m




{\displaystyle \mathrm {am} \geq \mathrm {gm} \geq \mathrm {hm} \,}



equality holds if , if elements of given sample equal.







Comments