Statement Fourier inversion theorem




1 statement

1.1 inverse fourier transform integral
1.2 fourier integral theorem
1.3 inverse transform in terms of flip operator
1.4 2 sided inverse





statement

in section assume



f


{\displaystyle f}

integrable continuous function. use convention fourier transform that







(


f


f
)
(
ξ
)
:=





r


n





e


2
π
i
y

ξ



f
(
y
)

d
y
.


{\displaystyle ({\mathcal {f}}f)(\xi ):=\int _{\mathbb {r} ^{n}}e^{-2\pi iy\cdot \xi }\,f(y)\,dy.}



furthermore, assume fourier transform integrable.


inverse fourier transform integral

the common statement of fourier inversion theorem state inverse transform integral. integrable function



g


{\displaystyle g}

,



x



r


n




{\displaystyle x\in \mathbb {r} ^{n}}

set










f




1


g
(
x
)
:=





r


n





e

2
π
i
x

ξ



g
(
ξ
)

d
ξ
.


{\displaystyle {\mathcal {f}}^{-1}g(x):=\int _{\mathbb {r} ^{n}}e^{2\pi ix\cdot \xi }\,g(\xi )\,d\xi .}



then x∈ℝ have










f




1


(


f


g
)
(
x
)
=
g
(
x
)
.


{\displaystyle {\mathcal {f}}^{-1}({\mathcal {f}}g)(x)=g(x).}



fourier integral theorem

the theorem can restated as







f
(
x
)
=





r


n









r


n





e

2
π
i
(
x

y
)

ξ



f
(
y
)

d
y

d
ξ
.


{\displaystyle f(x)=\int _{\mathbb {r} ^{n}}\int _{\mathbb {r} ^{n}}e^{2\pi i(x-y)\cdot \xi }\,f(y)\,dy\,d\xi .}



if f real valued taking real part of each side of above obtain







f
(
x
)
=





r


n









r


n




cos

(
2
π
(
x

y
)

ξ
)

f
(
y
)

d
y

d
ξ
.


{\displaystyle f(x)=\int _{\mathbb {r} ^{n}}\int _{\mathbb {r} ^{n}}\cos(2\pi (x-y)\cdot \xi )\,f(y)\,dy\,d\xi .}



inverse transform in terms of flip operator

for function



g


{\displaystyle g}

define flip operator



r


{\displaystyle r}

by







r
g
(
x
)
:=
g
(

x
)
.


{\displaystyle rg(x):=g(-x).}



then may instead define










f




1


f
:=
r


f


f
=


f


r
f
.


{\displaystyle {\mathcal {f}}^{-1}f:=r{\mathcal {f}}f={\mathcal {f}}rf.}



it immediate definition of fourier transform , flip operator both



r


f


f


{\displaystyle r{\mathcal {f}}f}

,





f


r
f


{\displaystyle {\mathcal {f}}rf}

match integral definition of






f




1


f


{\displaystyle {\mathcal {f}}^{-1}f}

, , in particular equal each other , satisfy






f




1


(


f


f
)
(
x
)
=
f
(
x
)


{\displaystyle {\mathcal {f}}^{-1}({\mathcal {f}}f)(x)=f(x)}

.


note since



r
f
=
r



f




1




f


f
=
r
r


f
f


f


{\displaystyle rf=r{\mathcal {f}}^{-1}{\mathcal {f}}f=rr{\mathcal {ff}}f}

have



r
=



f



2




{\displaystyle r={\mathcal {f}}^{2}}

and










f




1


=



f



3


.


{\displaystyle {\mathcal {f}}^{-1}={\mathcal {f}}^{3}.}



two sided inverse

the form of fourier inversion theorem stated above, common, that










f




1


(


f


f
)
(
x
)
=
f
(
x
)
.


{\displaystyle {\mathcal {f}}^{-1}({\mathcal {f}}f)(x)=f(x).}



in other words,






f




1




{\displaystyle {\mathcal {f}}^{-1}}

left inverse fourier transform. right inverse fourier transform i.e.









f


(



f




1


f
)
(
ξ
)
=
f
(
ξ
)
.


{\displaystyle {\mathcal {f}}({\mathcal {f}}^{-1}f)(\xi )=f(\xi ).}



since






f




1




{\displaystyle {\mathcal {f}}^{-1}}

similar





f




{\displaystyle {\mathcal {f}}}

, follows fourier inversion theorem (changing variables



ζ
:=

ζ


{\displaystyle \zeta :=-\zeta }

):











f



=



f




1


(


f


f
)
(
x
)






=





r


n









r


n





e

2
π
i
x

ξ




e


2
π
i
y

ξ



f
(
y
)

d
y

d
ξ






=





r


n









r


n





e


2
π
i
x

ζ




e

2
π
i
y

ζ



f
(
y
)

d
y

d
ζ






=


f


(



f




1


f
)
(
x
)
.






{\displaystyle {\begin{aligned}f&={\mathcal {f}}^{-1}({\mathcal {f}}f)(x)\\&=\int _{\mathbb {r} ^{n}}\int _{\mathbb {r} ^{n}}e^{2\pi ix\cdot \xi }\,e^{-2\pi iy\cdot \xi }\,f(y)\,dy\,d\xi \\&=\int _{\mathbb {r} ^{n}}\int _{\mathbb {r} ^{n}}e^{-2\pi ix\cdot \zeta }\,e^{2\pi iy\cdot \zeta }\,f(y)\,dy\,d\zeta \\&={\mathcal {f}}({\mathcal {f}}^{-1}f)(x).\end{aligned}}}



alternatively, can seen relation between






f




1


f


{\displaystyle {\mathcal {f}}^{-1}f}

, flip operator , associativity of function composition, since







f
=



f




1


(


f


f
)
=


f


r


f


f
=


f


(



f




1


f
)
.


{\displaystyle f={\mathcal {f}}^{-1}({\mathcal {f}}f)={\mathcal {f}}r{\mathcal {f}}f={\mathcal {f}}({\mathcal {f}}^{-1}f).}





cite error: there <ref group=note> tags on page, references not show without {{reflist|group=note}} template (see page).







Comments